Tidy up crawling and implement boolean search
This commit is contained in:
parent
d4bb3fb8dc
commit
7ee9d978b2
4 changed files with 91 additions and 30 deletions
24
src/crawl.py
24
src/crawl.py
|
|
@ -47,14 +47,14 @@ def parse_html(url: str, html: str, recursion: int = 0, traversed_links = [], ro
|
|||
|
||||
s = Session()
|
||||
existing_website = s.query(Documents).filter_by(url=url).first()
|
||||
print (existing_website)
|
||||
if existing_website == None:
|
||||
if existing_website is None:
|
||||
website = Documents(
|
||||
url=url,
|
||||
text_content=soup.get_text(),
|
||||
html_content=soup.prettify(),
|
||||
first_crawl_date=datetime.datetime.now(),
|
||||
last_crawl_date = datetime.datetime.now()
|
||||
last_crawl_date=datetime.datetime.now(),
|
||||
last_index_date=None
|
||||
)
|
||||
s.add(website)
|
||||
else:
|
||||
|
|
@ -64,44 +64,44 @@ def parse_html(url: str, html: str, recursion: int = 0, traversed_links = [], ro
|
|||
s.close()
|
||||
x = open(f'data/links.txt', 'a')
|
||||
x.close()
|
||||
links = soup.find_all("a")
|
||||
links = soup.find_all("a", href=True)
|
||||
for link in links:
|
||||
found = False
|
||||
if not hasattr(link, "href"):
|
||||
continue
|
||||
link = link["href"]
|
||||
if (len(link) > 0 and link[0] == "#") or "localhost" in link:
|
||||
continue
|
||||
if not "http" in link:
|
||||
if ".webp" in link or ".jpeg" in link or ".png" in link or ".gif" in link or ".pdf" in link or ".jpg" in link:
|
||||
continue
|
||||
if "http" not in link:
|
||||
link = urljoin(url, link)
|
||||
if (recursion > 0 and link not in traversed_links):
|
||||
try:
|
||||
traversed_links.append(link)
|
||||
link_html = get_html(link)
|
||||
r = recursion -1
|
||||
sleep(1)
|
||||
sleep(0.5)
|
||||
parse_html(link, link_html, r, traversed_links)
|
||||
except:
|
||||
pass
|
||||
elif link not in traversed_links:
|
||||
with open(f'data/links.txt', 'r+') as linksfile:
|
||||
with open('data/links.txt', 'r+') as linksfile:
|
||||
while line := linksfile.readline():
|
||||
if line.strip() == link.strip():
|
||||
found = True
|
||||
if not found:
|
||||
linksfile.write(f'{link}\n')
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
if __name__ == "__main__":
|
||||
os.makedirs("data/content", exist_ok=True)
|
||||
# check inputs
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("url", help="URL of the webpage to be crawled")
|
||||
parser.add_argument('-f', "--followlinks", action="store_true")
|
||||
max_recursion = 2
|
||||
max_recursion = 4
|
||||
args = parser.parse_args()
|
||||
if args.url == "links":
|
||||
with open(f'data/links.txt', 'r+') as linksfile:
|
||||
with open('data/links.txt', 'r+') as linksfile:
|
||||
while line := linksfile.readline():
|
||||
if "http" in line:
|
||||
try:
|
||||
|
|
|
|||
|
|
@ -1,10 +1,11 @@
|
|||
#!/usr/bin/python3
|
||||
import argparse
|
||||
from sqlalchemy import create_engine
|
||||
from sqlalchemy import create_engine, or_
|
||||
from config import DATABASE_URI
|
||||
from models import Base, Documents, Document_Tokens, Tokens
|
||||
from sqlalchemy.orm import sessionmaker
|
||||
import uuid
|
||||
import datetime
|
||||
|
||||
engine = create_engine(DATABASE_URI)
|
||||
Base.metadata.create_all(engine)
|
||||
|
|
@ -14,18 +15,22 @@ Session = sessionmaker(bind=engine)
|
|||
def build_index():
|
||||
session = Session()
|
||||
# Read list of 1000 documents from db
|
||||
documents = session.query(Documents).limit(1000)
|
||||
documents = session.query(Documents).filter(or_(Documents.last_index_date.is_(None), Documents.last_index_date<Documents.last_crawl_date)).limit(1000)
|
||||
for document in documents:
|
||||
print(document.url)
|
||||
content_words = document.text_content.split()
|
||||
for word in content_words:
|
||||
word = word.lower()
|
||||
if len(word) > 50:
|
||||
continue
|
||||
token = session.query(Tokens).filter_by(token=word).first()
|
||||
if token is None:
|
||||
token = Tokens(token=word, id=uuid.uuid4())
|
||||
session.add(token)
|
||||
document_token = Document_Tokens(document_id=document.id, token_id=token.id)
|
||||
session.add(document_token)
|
||||
document.last_index_date = datetime.datetime.now()
|
||||
session.add(document)
|
||||
session.commit()
|
||||
|
||||
|
||||
|
|
|
|||
|
|
@ -15,6 +15,7 @@ class Documents(Base):
|
|||
html_content = Column(String)
|
||||
first_crawl_date = Column(DateTime)
|
||||
last_crawl_date = Column(DateTime)
|
||||
last_index_date = Column(DateTime)
|
||||
document_tokens = relationship("Document_Tokens", back_populates="document")
|
||||
|
||||
|
||||
|
|
|
|||
|
|
@ -1,9 +1,10 @@
|
|||
#!/usr/bin/python3
|
||||
from sqlalchemy import create_engine
|
||||
from sqlalchemy import create_engine, func
|
||||
from config import DATABASE_URI
|
||||
from models import Base, Tokens
|
||||
from models import Base, Tokens, Documents, Document_Tokens
|
||||
from sqlalchemy.orm import sessionmaker
|
||||
|
||||
from sqlalchemy.sql.expression import distinct
|
||||
import time
|
||||
from flask import Flask
|
||||
from urllib.parse import unquote
|
||||
|
||||
|
|
@ -14,17 +15,71 @@ Session = sessionmaker(bind=engine)
|
|||
# Todo - Boolean search (AND/OR/NOT/"")
|
||||
|
||||
|
||||
def split_query(query):
|
||||
result = {'ands': [], 'ors': [], 'words': []}
|
||||
query_words = query.split()
|
||||
i = 0
|
||||
while i < len(query_words):
|
||||
if i + 1 < len(query_words):
|
||||
if query_words[i + 1].lower() == "and":
|
||||
if i + 2 < len(query_words):
|
||||
result['ands'].append(
|
||||
query_words[i] + ',' + query_words[i+2])
|
||||
i = i + 3
|
||||
continue
|
||||
result['words'].append(query_words[i])
|
||||
i += 1
|
||||
return result
|
||||
|
||||
|
||||
@app.route("/search/<query>")
|
||||
def search(query):
|
||||
start_time = time.time_ns()
|
||||
session = Session()
|
||||
result = []
|
||||
query_words = unquote(query).split()
|
||||
for word in query_words:
|
||||
word = word.lower()
|
||||
matching_token = session.query(Tokens).filter_by(token=word).first()
|
||||
if session is None:
|
||||
continue
|
||||
for document_token in matching_token.document_tokens:
|
||||
results = {}
|
||||
query_words = split_query(unquote(query))
|
||||
for a in query_words['ands']:
|
||||
query = session.query(Documents.url, func.count(1)).\
|
||||
join(Document_Tokens, Documents.id == Document_Tokens.document_id).\
|
||||
join(Tokens, Document_Tokens.token_id == Tokens.id).\
|
||||
filter(Tokens.token.in_([a.split(',')[0], a.split(',')[1]])).\
|
||||
group_by(Documents.url).\
|
||||
having(func.count(distinct(Document_Tokens.token_id)) == 2).\
|
||||
order_by(func.count(1).desc())
|
||||
for result in query.all():
|
||||
if result[0] in results.keys():
|
||||
results[result[0]] += result[1]
|
||||
else:
|
||||
results[result[0]] = result[1]
|
||||
x = session.query(Tokens).filter(
|
||||
Tokens.token.in_(query_words['words'])).limit(1000)
|
||||
for y in x:
|
||||
for document_token in y.document_tokens:
|
||||
if document_token.document.url in results.keys():
|
||||
results[document_token.document.url] += 1
|
||||
else:
|
||||
results[document_token.document.url] = 1
|
||||
|
||||
result.append(document_token.document.url)
|
||||
return result
|
||||
print(str((time.time_ns() - start_time) // 1_000_000) + "ms")
|
||||
return sorted(results.items(), key=lambda x: x[1], reverse=True)[:10]
|
||||
|
||||
# @app.route("/search/<query>")
|
||||
# def search(query):
|
||||
# start_time = time.time_ns()
|
||||
# session = Session()
|
||||
# result = {}
|
||||
# query_words = unquote(query).split()
|
||||
# x= session.query(Tokens).filter(Tokens.token.in_(query_words)).take(1000)
|
||||
# for word in query_words:
|
||||
# word = word.lower()
|
||||
# matching_token = session.query(Tokens).filter_by(token=word).first()
|
||||
#
|
||||
# if matching_token is None:
|
||||
# continue
|
||||
# for document_token in matching_token.document_tokens:
|
||||
# if document_token.document.url in result.keys():
|
||||
# result[document_token.document.url] += 1
|
||||
# else:
|
||||
# result[document_token.document.url] = 1
|
||||
# print(str((time.time_ns() - start_time) // 1_000_000) + "ms")
|
||||
# return sorted(result.items(), key=lambda x: x[1], reverse=True)[:10]
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue