Rework ngram generation. Greatly improve performance of indexer. Commit horrendous sql sins
This commit is contained in:
parent
9f0e7e6b29
commit
bdb4064acc
5 changed files with 155 additions and 57 deletions
10
src/crawl.py
10
src/crawl.py
|
|
@ -20,6 +20,9 @@ engine = create_engine(DATABASE_URI)
|
|||
Base.metadata.create_all(engine)
|
||||
Session = sessionmaker(bind=engine)
|
||||
|
||||
excluded_domains = ['amazon.', 'news.ycombinator.',
|
||||
'facebook.com', 'amzn', 'fb.com']
|
||||
|
||||
|
||||
def get_html(url: str) -> str:
|
||||
response = requests.get(url)
|
||||
|
|
@ -36,6 +39,7 @@ def parse_youtube(video_url: str) -> bool:
|
|||
'allsubtitles': True,
|
||||
'skip_download': True, # We only want to fetch metadata
|
||||
'subtitleslangs': [subtitle_language] if subtitle_language else None,
|
||||
'extractor-args': {'youtube': {'player_client': 'ios,web'}},
|
||||
}
|
||||
|
||||
# Initialize youtube_dl object
|
||||
|
|
@ -132,6 +136,8 @@ def parse_html(url: str, html: str, recursion: int = 0, traversed_links=[], robo
|
|||
continue
|
||||
if "http" not in link:
|
||||
link = urljoin(url, link)
|
||||
link = link.split('?')[0]
|
||||
link = link.split('#')[0]
|
||||
if (recursion > 0 and link not in traversed_links):
|
||||
try:
|
||||
traversed_links.append(link)
|
||||
|
|
@ -156,8 +162,10 @@ if __name__ == "__main__":
|
|||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("url", help="URL of the webpage to be crawled")
|
||||
parser.add_argument('-f', "--followlinks", action="store_true")
|
||||
max_recursion = 4
|
||||
parser.add_argument('-r', "--max-recursion", help="", type=int, default=1)
|
||||
|
||||
args = parser.parse_args()
|
||||
max_recursion = int(args.max_recursion)
|
||||
if args.url == "links":
|
||||
with open('data/links.txt', 'r+') as linksfile:
|
||||
while line := linksfile.readline():
|
||||
|
|
|
|||
103
src/index.py
103
src/index.py
|
|
@ -1,51 +1,55 @@
|
|||
#!/usr/bin/python3
|
||||
|
||||
import argparse
|
||||
from sqlalchemy import create_engine, or_
|
||||
from sqlalchemy import create_engine, or_, text
|
||||
from sqlalchemy import Table, Column, String, Integer
|
||||
from config import DATABASE_URI
|
||||
from sqlalchemy.dialects.postgresql import UUID
|
||||
from models import Base, Documents, Document_Tokens, Tokens, NGrams, Document_NGrams
|
||||
from sqlalchemy.orm import sessionmaker
|
||||
from sqlalchemy.exc import SQLAlchemyError
|
||||
import uuid
|
||||
import datetime
|
||||
import time
|
||||
import re
|
||||
import random
|
||||
from multiprocessing import Pool
|
||||
|
||||
engine = create_engine(DATABASE_URI)
|
||||
Base.metadata.create_all(engine)
|
||||
Session = sessionmaker(bind=engine)
|
||||
# https://docs.sqlalchemy.org/en/20/orm/queryguide/dml.html
|
||||
|
||||
|
||||
def contains_latin(text):
|
||||
latin_pattern = r'[a-zA-ZÀ-ÖØ-öø-ÿ]'
|
||||
return bool(re.search(latin_pattern, text))
|
||||
|
||||
|
||||
def build_index_chunk(document_chunk):
|
||||
session = Session()
|
||||
print(len(document_chunk))
|
||||
start_time = time.time_ns()
|
||||
for document in document_chunk:
|
||||
print(document.url)
|
||||
content = re.sub(r'[^\w\s]', '', str(document.text_content))
|
||||
content = re.sub(r'[.,?!]', ' ', str(document.text_content))
|
||||
content = re.sub(r'[^\w\s]', '', str(content))
|
||||
content_words = content.split()
|
||||
build_ngrams(2, content_words, session, document.id)
|
||||
build_ngrams(3, content_words, session, document.id)
|
||||
build_ngrams(4, content_words, session, document.id)
|
||||
build_ngrams(5, content_words, session, document.id)
|
||||
for word in content_words:
|
||||
word = word.lower()
|
||||
if len(word) > 50:
|
||||
continue
|
||||
token = session.query(Tokens).filter_by(token=word).first()
|
||||
if token is None:
|
||||
token = Tokens(token=word, id=uuid.uuid4())
|
||||
session.add(token)
|
||||
document_token = Document_Tokens(
|
||||
document_id=document.id, token_id=token.id)
|
||||
session.add(document_token)
|
||||
build_ngrams(1, content_words, document.id)
|
||||
build_ngrams(2, content_words, document.id)
|
||||
build_ngrams(3, content_words, document.id)
|
||||
build_ngrams(4, content_words, document.id)
|
||||
build_ngrams(5, content_words, document.id)
|
||||
|
||||
document.last_index_date = datetime.datetime.now()
|
||||
session.add(document)
|
||||
session.merge(document)
|
||||
session.commit()
|
||||
session.close()
|
||||
|
||||
|
||||
def build_index():
|
||||
session = Session()
|
||||
while True:
|
||||
session = Session()
|
||||
documents_query = session.query(Documents).filter(or_(Documents.last_index_date.is_(
|
||||
None), Documents.last_index_date < Documents.last_crawl_date)).limit(100)
|
||||
session.close()
|
||||
|
|
@ -54,16 +58,62 @@ def build_index():
|
|||
documents = list(documents_query)
|
||||
if len(documents) == 0:
|
||||
return
|
||||
build_index_chunk(documents)
|
||||
continue
|
||||
chunk_size = 10
|
||||
document_chunks = [documents[i:i+chunk_size]
|
||||
for i in range(0, len(documents), chunk_size)]
|
||||
|
||||
with Pool() as pool:
|
||||
pool.map(build_index_chunk, document_chunks)
|
||||
|
||||
|
||||
def build_ngrams(size: int, corpus: str, session: sessionmaker, document_id: str):
|
||||
def zip_ngrams(size: int, corpus, document_id):
|
||||
size = int(size)
|
||||
connection = engine.connect()
|
||||
temptbl_name = 'temp_del_{}'.format(random.randint(100000, 9999999))
|
||||
temptbl = Table(temptbl_name, Base.metadata, Column('id', UUID(as_uuid=True), index=True), Column(
|
||||
'gram', String, index=True), Column('size', Integer, index=True), extend_existing=True)
|
||||
|
||||
try:
|
||||
# Start transaction
|
||||
with connection.begin():
|
||||
temptbl.create(engine)
|
||||
insert_grams = []
|
||||
grams = zip(*[corpus[i:] for i in range(size)])
|
||||
for gram in grams:
|
||||
gram = ' '.join(gram).lower()
|
||||
insert_grams.append(
|
||||
{"id": uuid.uuid4(), "gram": gram, "size": size})
|
||||
connection.execute(temptbl.insert().values(insert_grams))
|
||||
connection.execute(text("UPDATE " + temptbl_name +
|
||||
" SET id = ngrams.id FROM ngrams WHERE ngrams.gram = "
|
||||
+ temptbl_name + ".gram;"))
|
||||
connection.execute(text("INSERT INTO ngrams (id, gram, size) SELECT " +
|
||||
" distinct t.id, t.gram as gram, t.size FROM " +
|
||||
temptbl_name + " t LEFT JOIN ngrams on ngrams.gram = " +
|
||||
"t.gram WHERE ngrams.id is null and t.size is not null " + " ON CONFLICT DO NOTHING;"))
|
||||
connection.execute(text("INSERT INTO document_ngrams(id, document_id, ngram_id) SELECT DISTINCT " +
|
||||
"uuid_generate_v4() , '" + str(document_id) + "'::UUID, t.id FROM " + temptbl_name + " t;"))
|
||||
except SQLAlchemyError as e:
|
||||
# Handle exceptions
|
||||
print("An error occurred:", e)
|
||||
# Rollback transaction
|
||||
connection.rollback()
|
||||
else:
|
||||
# Commit transaction if no exceptions occurred
|
||||
connection.commit()
|
||||
finally:
|
||||
connection.close()
|
||||
# Drop table outside the transaction block
|
||||
temptbl.drop(engine)
|
||||
|
||||
|
||||
def build_ngrams(size: int, corpus: str, document_id: str):
|
||||
session = Session()
|
||||
zip_ngrams(size, corpus, document_id)
|
||||
return
|
||||
i = 0
|
||||
grams = []
|
||||
while i < len(corpus):
|
||||
if i + size >= len(corpus):
|
||||
i = len(corpus)
|
||||
|
|
@ -73,18 +123,23 @@ def build_ngrams(size: int, corpus: str, session: sessionmaker, document_id: str
|
|||
break
|
||||
gram += corpus[i+n] + ' '
|
||||
gram = gram.strip().lower()
|
||||
if len(gram) > 4000:
|
||||
if len(gram) > 1000 or gram in grams or not contains_latin(gram):
|
||||
i += 1
|
||||
continue
|
||||
ngram = session.query(NGrams).filter_by(gram=gram).first()
|
||||
grams.append(gram)
|
||||
if (len(gram) > 1):
|
||||
ngram = session.query(NGrams).filter_by(
|
||||
gram=gram).filter_by(size=size).first()
|
||||
if ngram is None:
|
||||
ngram = NGrams(id=uuid.uuid4(), size=size, gram=gram)
|
||||
session.add(ngram)
|
||||
document_ngram = Document_NGrams(
|
||||
document_id=document_id, ngram_id=ngram.id)
|
||||
session.add(document_ngram)
|
||||
# session.commit()
|
||||
session.commit()
|
||||
i += 1
|
||||
# print(str((time.time_ns() - start_time)//1_000_000))
|
||||
session.close()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
|
|
|||
|
|
@ -32,6 +32,12 @@ class Document_Tokens(Base):
|
|||
document = relationship(
|
||||
"Documents", back_populates="document_tokens", uselist=False)
|
||||
token = relationship("Tokens", back_populates="document_tokens")
|
||||
__table_args__ = (
|
||||
Index('idx_document_tokens_document_id_token_id', 'document_id',
|
||||
'token_id', unique=True, postgresql_using='hash'),
|
||||
Index('idx_document_tokens_clustered', 'document_id',
|
||||
'token_id', postgresql_using='hash'),
|
||||
)
|
||||
|
||||
|
||||
class Tokens(Base):
|
||||
|
|
@ -53,9 +59,14 @@ class Document_NGrams(Base):
|
|||
__tablename__ = 'document_ngrams'
|
||||
id = Column(UUID(as_uuid=True), primary_key=True, default=uuid.uuid4)
|
||||
document_id = mapped_column(ForeignKey("documents.id"))
|
||||
# Column(UUID(as_uuid=True), primary_key=True, default=uuid.uuid4)
|
||||
ngram_id = mapped_column(ForeignKey("ngrams.id"))
|
||||
# Column(UUID(as_uuid=True), primary_key=True, default=uuid.uuid4)
|
||||
document = relationship(
|
||||
"Documents", back_populates="document_ngrams", uselist=False)
|
||||
ngram = relationship("NGrams", back_populates="document_ngrams")
|
||||
|
||||
__table_args__ = (
|
||||
Index('idx_document_ngrams_document_id_ngram_id', 'document_id',
|
||||
'ngram_id', unique=True, postgresql_using='hash'),
|
||||
Index('idx_document_ngrams_clustered', 'document_id',
|
||||
'ngram_id', postgresql_using='hash'),
|
||||
)
|
||||
|
|
|
|||
|
|
@ -1,7 +1,7 @@
|
|||
#!/usr/bin/python3
|
||||
from sqlalchemy import create_engine, func
|
||||
from config import DATABASE_URI
|
||||
from models import Base, Tokens, Documents, Document_Tokens, NGrams
|
||||
from models import Base, Tokens, Documents, Document_Tokens, NGrams, Document_NGrams
|
||||
from sqlalchemy.orm import sessionmaker
|
||||
from sqlalchemy.sql.expression import distinct
|
||||
import time
|
||||
|
|
@ -37,9 +37,9 @@ def split_query(query):
|
|||
n += 1
|
||||
result['ngrams'].append(
|
||||
quoted_query[1:len(quoted_query)-2].rstrip())
|
||||
i += n
|
||||
i += n + 1
|
||||
continue
|
||||
result['words'].append(query_words[i])
|
||||
result['ngrams'].append(query_words[i])
|
||||
i += 1
|
||||
return result
|
||||
|
||||
|
|
@ -50,6 +50,7 @@ def search(query):
|
|||
session = Session()
|
||||
results = {}
|
||||
query_words = split_query(unquote(query))
|
||||
print(query_words)
|
||||
if len(query_words['ands']) > 0:
|
||||
for a in query_words['ands']:
|
||||
query = session.query(Documents.url, func.count(1)). \
|
||||
|
|
@ -68,35 +69,55 @@ def search(query):
|
|||
print('entering ngrams: ' +
|
||||
str((time.time_ns() - start_time) // 1_000_000) + "ms")
|
||||
|
||||
q = session.query(NGrams)
|
||||
q = session.query(Documents.url, func.count(1)) \
|
||||
.join(Document_NGrams, Documents.id == Document_NGrams.document_id) \
|
||||
.join(NGrams, Document_NGrams.ngram_id == NGrams.id) \
|
||||
.group_by(Documents.url)
|
||||
for ngram in query_words['ngrams']:
|
||||
q = q.filter_by(size=len(ngram.split(' '))).filter_by(gram=ngram)
|
||||
print('query built: ' + str((time.time_ns() - start_time) // 1_000_000) + "ms")
|
||||
|
||||
print(q)
|
||||
x = q.all()
|
||||
for y in x:
|
||||
for document_ngram in y.document_ngrams:
|
||||
if document_ngram.document.url in results.keys():
|
||||
results[document_ngram.document.url] += 1
|
||||
print('query executed: ' +
|
||||
str((time.time_ns() - start_time) // 1_000_000) + "ms")
|
||||
print(x)
|
||||
for result in x:
|
||||
if result[0] in results.keys():
|
||||
results[result[0]] += result[1]
|
||||
else:
|
||||
results[document_ngram.document.url] = 1
|
||||
results[result[0]] = result[1]
|
||||
# for y in x:
|
||||
# print(y)
|
||||
# for document_ngram in y.document_ngrams:
|
||||
# if document_ngram.document.url in results.keys():
|
||||
# results[document_ngram.document.url] += 1
|
||||
# else:
|
||||
# results[document_ngram.document.url] = 1
|
||||
print('exiting ngrams: ' +
|
||||
str((time.time_ns() - start_time) // 1_000_000) + "ms")
|
||||
if len(query_words['words']) > 0:
|
||||
print('entering words: ' +
|
||||
str((time.time_ns() - start_time) // 1_000_000) + "ms")
|
||||
x = session.query(Tokens).filter(
|
||||
Tokens.token.in_(query_words['words'])).limit(1000)
|
||||
for y in x:
|
||||
for document_token in y.document_tokens:
|
||||
if document_token.document.url in results.keys():
|
||||
results[document_token.document.url] += 1
|
||||
q = session.query(Documents.url, func.count(1)) \
|
||||
.join(Document_Tokens, Documents.id == Document_Tokens.document_id) \
|
||||
.join(Tokens, Document_Tokens.token_id == Tokens.id) \
|
||||
.group_by(Documents.url).filter(Tokens.token.in_(query_words['words']))
|
||||
|
||||
print('query built: ' + str((time.time_ns() - start_time) // 1_000_000) + "ms")
|
||||
print(q)
|
||||
x = q.all()
|
||||
print('query executed: ' +
|
||||
str((time.time_ns() - start_time) // 1_000_000) + "ms")
|
||||
for result in x:
|
||||
if result[0] in results.keys():
|
||||
results[result[0]] += result[1]
|
||||
else:
|
||||
results[document_token.document.url] = 1
|
||||
results[result[0]] = result[1]
|
||||
print('exiting words: ' +
|
||||
str((time.time_ns() - start_time) // 1_000_000) + "ms")
|
||||
|
||||
print(str((time.time_ns() - start_time) // 1_000_000) + "ms")
|
||||
session.close()
|
||||
return sorted(results.items(), key=lambda x: x[1], reverse=True)[:10]
|
||||
|
||||
# @app.route("/search/<query>")
|
||||
|
|
|
|||
13
todo
13
todo
|
|
@ -1,6 +1,9 @@
|
|||
[ ] Refactor website table to generic document table (maybe using URN instead of URL?)
|
||||
[ ] Define tokens table FKed to document table
|
||||
[ ] Refactor index.py to tokenize input into tokens table
|
||||
[ ] Define N-Grams table
|
||||
[ ] Add N-Gram generation to index.py
|
||||
[x] Refactor website table to generic document table (maybe using URN instead of URL?)
|
||||
[x] Define tokens table FKed to document table
|
||||
[x] Refactor index.py to tokenize input into tokens table
|
||||
[x] Define N-Grams table
|
||||
[x] Add N-Gram generation to index.py
|
||||
[x] Add clustered index to document_ngrams table model
|
||||
[x] Add clustered index to document_tokens table model
|
||||
[ ] Add ddl command to create partition tables
|
||||
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue