Compare commits

...
Sign in to create a new pull request.

16 commits

10 changed files with 632 additions and 113 deletions

33
client/src/css/styles.css Normal file
View file

@ -0,0 +1,33 @@
html, body {
height: 100%;
}
body {
margin: 0;
}
input {
padding: 7px;
font-size: 1.1rem;
}
.search-container {
display: flex;
justify-content: center;
align-items: center;
text-align: center;
min-height: 25vh;
}
.flex-container {
padding: 0;
margin: 0;
display: flex;
align-items: center;
justify-content: center;
flex-direction: column;
}
.flex-item {
}
.result {
display:block;
max-width: 60vw;
overflow-x: hidden;
}

16
client/src/index.html Normal file
View file

@ -0,0 +1,16 @@
<html>
<head>
<link rel="stylesheet" href="css/styles.css">
</head>
<body>
<div class="search-container">
<input type="text" class="searchbox" id="searchbox">
</div>
<div class="flex-container">
<div class="flex-item" id="results">
</div>
</div>
<script src="js/index.js"></script>
</body>
</html>

28
client/src/js/index.js Normal file
View file

@ -0,0 +1,28 @@
function debounce(func, timeout = 300){
let timer;
return (...args) => {
clearTimeout(timer);
timer = setTimeout(() => { func.apply(this, args); }, timeout);
};
}
async function search(searchBox){
const response = await fetch(`http://localhost:5000/search/${searchBox.value}`);
const results = await response.json();
const resultView = document.getElementById("results");
resultView.replaceChildren();
for (let i = 0; i < results.length; i++){
let result = results[i];
let resultElement = document.createElement("a");
resultElement.innerText = result[0];
resultElement.href = result[0];
resultElement.className = "flex-item result";
resultView.appendChild(resultElement);
}
}
const searchBoxKeyUp = debounce(() => search())
const searchBox = document.getElementById("searchbox");
searchBox.addEventListener("keyup", debounce(() => search(searchBox)))

View file

@ -1,49 +1,83 @@
#!/usr/bin/python3
import argparse
import requests
import hashlib
from urllib.parse import urlparse, urljoin
import urllib.robotparser
import os
from time import sleep
from bs4 import BeautifulSoup
from sqlalchemy import create_engine
from config import DATABASE_URI
from models import Base, Website
from models import Base, Documents
from sqlalchemy.orm import sessionmaker
from sqlalchemy import create_engine
import datetime
import yt_dlp as youtube_dl
# TODO- Handle gemini/gopher links
# TODO- Keep a list of traversed links and check before traversing again
engine = create_engine(DATABASE_URI)
Base.metadata.create_all(engine)
Session = sessionmaker(bind=engine)
def get_html(url: str) -> str:
excluded_domains = ['amazon.', 'news.ycombinator.',
'facebook.com', 'amzn', 'fb.com']
excluded_filetypes = [".jpg", ".xml", ".mp4", ".jpeg", ".db",
".mp3", ".png", ".tiff", ".gif", ".webp", ".pdf"]
def get_html(url: str) -> str:
response = requests.get(url)
return response.content
def parse_html(url: str, html: str, recursion: int = 0, traversed_links = []) -> bool:
print(url)
print(recursion)
urlparts = urlparse(url)
baseurl = urlparts.scheme + "://" + urlparts.netloc
soup = BeautifulSoup(html,'html.parser')
hash = hashlib.sha256()
hash.update(url.encode('ascii'))
def parse_youtube(video_url: str) -> bool:
return
# Language preference for subtitles (set to None for auto-generated)
# Change this to 'en' for English subtitles, or None for auto-generated
subtitle_language = 'en'
# Options for youtube_dl
ydl_opts = {
'writesubtitles': True,
'allsubtitles': True,
'skip_download': True, # We only want to fetch metadata
'subtitleslangs': [subtitle_language] if subtitle_language else None,
'extractor-args': {'youtube': {'player_client': 'ios,web'}},
}
# Initialize youtube_dl object
with youtube_dl.YoutubeDL(ydl_opts) as ydl:
# Download metadata
info_dict = ydl.extract_info(video_url, download=False)
# Extract subtitles
subtitles = info_dict.get('subtitles')
subtitles_text = ""
# Print available subtitles
if subtitles:
for subs in subtitles.values():
for sub in subs:
subtitle_url = sub['url']
with youtube_dl.YoutubeDL({}) as ydl:
subtitle_info = ydl.extract_info(
subtitle_url, download=False)
for subtitle in subtitle_info['subtitles'][subtitle_language]:
if subtitle["ext"] == "srv1":
soup = BeautifulSoup(
get_html(subtitle["url"]), 'html.parser')
subtitles_text = soup.get_text()
s = Session()
existing_website = s.query(Website).filter_by(url=url).first()
print (existing_website)
if existing_website == None:
website = Website(
url=url,
text_content=soup.get_text(),
html_content=soup.prettify(),
existing_website = s.query(
Documents).filter_by(url=video_url).first()
if existing_website is None:
website = Documents(
url=video_url,
text_content=subtitles_text,
html_content=None, # soup.prettify(),
first_crawl_date=datetime.datetime.now(),
last_crawl_date = datetime.datetime.now()
last_crawl_date=datetime.datetime.now(),
last_index_date=None
)
s.add(website)
else:
@ -51,54 +85,127 @@ def parse_html(url: str, html: str, recursion: int = 0, traversed_links = []) ->
s.add(existing_website)
s.commit()
s.close()
x = open(f'data/links.txt', 'a')
x.close()
links = soup.find_all("a")
def parse_html(url: str, html: str, recursion: int = 0, traversed_links=[], robots={}) -> bool:
for domain in excluded_domains:
if domain in url:
return
if any(ext in url for ext in excluded_filetypes):
return
if "youtube.com" in url:
parse_youtube(url)
return
rp = urllib.robotparser.RobotFileParser()
print(url)
print(recursion)
urlparts = urlparse(url)
baseurl = urlparts.scheme + "://" + urlparts.netloc
if baseurl not in robots:
rp.set_url(baseurl + "/robots.txt")
rp.read()
robots[baseurl] = rp
else:
rp = robots[baseurl]
if not rp.can_fetch("*", url):
print("Robots prevents crawling url: " + url)
return
soup = BeautifulSoup(html, 'html.parser')
s = Session()
existing_website = s.query(Documents).filter_by(url=url).first()
if existing_website is None:
website = Documents(
url=url,
text_content=soup.get_text(),
html_content=soup.prettify(),
first_crawl_date=datetime.datetime.now(),
last_crawl_date=datetime.datetime.now(),
last_index_date=None
)
s.add(website)
else:
existing_website.last_crawl_date = datetime.datetime.now()
s.add(existing_website)
s.commit()
s.close()
links = soup.find_all("a", href=True)
for link in links:
found = False
link = link["href"]
if (len(link) > 0 and link[0] == "#") or "localhost" in link:
continue
if not "http" in link:
if any(ext in link for ext in excluded_filetypes):
continue
if "http" not in link:
link = urljoin(url, link)
link = link.split('?')[0]
link = link.split('#')[0]
if (recursion > 0 and link not in traversed_links):
try:
traversed_links.append(link)
link_html = get_html(link)
r = recursion - 1
sleep(1)
sleep(0.5)
parse_html(link, link_html, r, traversed_links)
except:
pass
# else:
# with open(f'data/links.txt', 'r+') as linksfile:
# elif link not in traversed_links:
# with open('data/links.txt', 'r+') as linksfile:
# while line := linksfile.readline():
# if line.strip() == link.strip():
# found = True
# if not found:
# linksfile.write(f'{link}\n')
if __name__ == "__main__":
def parse_site_map(base_url):
map = BeautifulSoup(requests.get(base_url).content, 'xml')
print(map.find_all('loc'))
for loc in map.find_all('loc'):
if "xml" in loc.contents[0]:
parse_site_map(loc.contents[0])
else:
url = loc.contents[0]
html = get_html(url)
parse_html(url, html, max_recursion)
if __name__ == "__main__":
os.makedirs("data/content", exist_ok=True)
# check inputs
parser = argparse.ArgumentParser()
parser.add_argument("url", help="URL of the webpage to be crawled")
parser.add_argument('-f', "--followlinks", action="store_true")
max_recursion = 4
parser.add_argument('-s', "--crawl-sitemap", action="store_true")
parser.add_argument('-r', "--max-recursion", help="", type=int, default=1)
args = parser.parse_args()
max_recursion = int(args.max_recursion)
if args.url == "links":
with open('data/links.txt', 'r+') as linksfile:
while line := linksfile.readline():
if "http" in line:
try:
parse_html(line, get_html(line))
except:
pass
elif args.crawl_sitemap:
rp = urllib.robotparser.RobotFileParser()
urlparts = urlparse(args.url)
baseurl = urlparts.scheme + "://" + urlparts.netloc
rp.set_url(baseurl + "/robots.txt")
rp.read()
if not rp.can_fetch("*", args.url):
print("Robots prevents crawling url: " + args.url)
exit(0)
if len(rp.site_maps()) > 0:
parse_site_map(rp.site_maps()[0])
else:
html = get_html(args.url)
parse_html(args.url, html, max_recursion)
# recursion = 0
# if (args.followlinks):
# with open(f'data/links.txt', 'r+') as linksfile:
# while line := linksfile.readline():
# if recursion < max_recursion:
# if "http" in line:
# recursion += 1
# try:
# parse_html(line, get_html(line))
# except:
# pass
os.remove('data/links.txt')
# os.remove('data/links.txt')

View file

@ -1,54 +1,154 @@
from sqlalchemy import create_engine
from config import DATABASE_URI
from models import Base, Website
from pathlib import Path
import argparse
import os
import json
# investigate ngrams for "multi word" matching
ignored_words = ['a', 'the','is']
#!/usr/bin/python3
def remove_punctuation(input_string):
punc = '''!()-[]{};:'"\,<>./?@#$%^&*_~?!'''
for p in punc:
input_string = input_string.replace(p, '')
return input_string
import argparse
from sqlalchemy import create_engine, or_, text
from sqlalchemy import Table, Column, String, Integer
from config import DATABASE_URI
from sqlalchemy.dialects.postgresql import UUID
from models import Base, Documents, Document_Tokens, Tokens, NGrams, Document_NGrams
from sqlalchemy.orm import sessionmaker
from sqlalchemy.exc import SQLAlchemyError
import uuid
import datetime
import time
import re
import random
from multiprocessing import Pool
engine = create_engine(DATABASE_URI)
Base.metadata.create_all(engine)
Session = sessionmaker(bind=engine)
# https://docs.sqlalchemy.org/en/20/orm/queryguide/dml.html
def contains_latin(text):
latin_pattern = r'[a-zA-ZÀ-ÖØ-öø-ÿ]'
return bool(re.search(latin_pattern, text))
def build_index_chunk(document_chunk):
session = Session()
print(len(document_chunk))
start_time = time.time_ns()
for document in document_chunk:
print(document.url)
content = re.sub(r'[.,?!]', ' ', str(document.text_content))
content = re.sub(r'[^\w\s]', '', str(content))
content_words = content.split()
build_ngrams(1, content_words, document.id)
build_ngrams(2, content_words, document.id)
build_ngrams(3, content_words, document.id)
build_ngrams(4, content_words, document.id)
build_ngrams(5, content_words, document.id)
document.last_index_date = datetime.datetime.now()
session.merge(document)
session.commit()
session.close()
def build_index():
with open(f"data/index.json", "w") as index:
# get a list of all content files
# split on whitespace and add to index
dictionary = {}
pathlist = Path('data/content').rglob('*.txt')
for path in pathlist:
with open(str(path)) as content_file:
url = content_file.readline()
content = content_file.read()
content_words = content.split()
for word in content_words:
word = word.lower()
word = remove_punctuation(word)
if not word in ignored_words:
if not word in dictionary:
dictionary[word] = []
matching_urls = list(filter(lambda entry: entry["url"] == url.strip(), dictionary[word]))
if len(matching_urls) == 0:
# if not url.strip() in dictionary[word]:
entries = dictionary[word]
entry = {"url": url.strip(), "count": 1, "filename": str(path)}
dictionary[word].append(entry)
while True:
session = Session()
documents_query = session.query(Documents).filter(or_(Documents.last_index_date.is_(
None), Documents.last_index_date < Documents.last_crawl_date)).limit(100)
session.close()
# Execute the query to get the result set
documents = list(documents_query)
if len(documents) == 0:
return
build_index_chunk(documents)
continue
chunk_size = 10
document_chunks = [documents[i:i+chunk_size]
for i in range(0, len(documents), chunk_size)]
with Pool() as pool:
pool.map(build_index_chunk, document_chunks)
def zip_ngrams(size: int, corpus, document_id):
size = int(size)
connection = engine.connect()
temptbl_name = 'temp_del_{}'.format(
time.time_ns() + random.randint(100000, 9999999))
temptbl = Table(temptbl_name, Base.metadata, Column('id', UUID(as_uuid=True), index=True), Column(
'gram', String, index=True), Column('size', Integer, index=True), extend_existing=True)
try:
# Start transaction
with connection.begin():
temptbl.create(engine)
insert_grams = []
grams = zip(*[corpus[i:] for i in range(size)])
for gram in grams:
gram = ' '.join(gram).lower()
insert_grams.append(
{"id": uuid.uuid4(), "gram": gram, "size": size})
connection.execute(temptbl.insert().values(insert_grams))
connection.execute(text("UPDATE " + temptbl_name +
" SET id = ngrams.id FROM ngrams WHERE ngrams.gram = "
+ temptbl_name + ".gram;"))
connection.execute(text("INSERT INTO ngrams (id, gram, size) SELECT " +
" distinct t.id, t.gram as gram, t.size FROM " +
temptbl_name + " t LEFT JOIN ngrams on ngrams.gram = " +
"t.gram WHERE ngrams.id is null and t.size is not null " + " ON CONFLICT DO NOTHING;"))
connection.execute(text("INSERT INTO document_ngrams(id, document_id, ngram_id) SELECT DISTINCT " +
"uuid_generate_v4() , '" + str(document_id) + "'::UUID, t.id FROM " + temptbl_name + " t;"))
except SQLAlchemyError as e:
# Handle exceptions
print("An error occurred:", e)
# Rollback transaction
connection.rollback()
else:
entries = dictionary[word]
entry = matching_urls[0]
entry["count"] += 1
entries.sort(reverse=True, key=lambda entry: entry["count"])
index.write(json.dumps(dictionary))
# Commit transaction if no exceptions occurred
connection.commit()
finally:
connection.close()
# Drop table outside the transaction block
temptbl.drop(engine)
def build_ngrams(size: int, corpus: str, document_id: str):
session = Session()
zip_ngrams(size, corpus, document_id)
return
i = 0
grams = []
while i < len(corpus):
if i + size >= len(corpus):
i = len(corpus)
gram = ''
for n in range(0, size):
if i + n >= len(corpus):
break
gram += corpus[i+n] + ' '
gram = gram.strip().lower()
if len(gram) > 1000 or gram in grams or not contains_latin(gram):
i += 1
continue
grams.append(gram)
if (len(gram) > 1):
ngram = session.query(NGrams).filter_by(
gram=gram).filter_by(size=size).first()
if ngram is None:
ngram = NGrams(id=uuid.uuid4(), size=size, gram=gram)
session.add(ngram)
document_ngram = Document_NGrams(
document_id=document_id, ngram_id=ngram.id)
session.add(document_ngram)
session.commit()
i += 1
# print(str((time.time_ns() - start_time)//1_000_000))
session.close()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('-r', "--rebuild", action="store_true", help="Blow away the index and rebuild")
parser.add_argument('-r',
"--rebuild",
action="store_true",
help="Blow away the index and rebuild")
args = parser.parse_args()
if args.rebuild:
build_index()

54
src/index.py.old Normal file
View file

@ -0,0 +1,54 @@
from sqlalchemy import create_engine
from config import DATABASE_URI
from models import Base, Website
from pathlib import Path
import argparse
import os
import json
# investigate ngrams for "multi word" matching
ignored_words = ['a', 'the','is']
def remove_punctuation(input_string):
punc = '''!()-[]{};:'"\,<>./?@#$%^&*_~?!'''
for p in punc:
input_string = input_string.replace(p, '')
return input_string
def build_index():
with open("data/index.json", "w") as index:
# get a list of all content files
# split on whitespace and add to index
dictionary = {}
pathlist = Path('data/content').rglob('*.txt')
for path in pathlist:
with open(str(path)) as content_file:
url = content_file.readline()
content = content_file.read()
content_words = content.split()
for word in content_words:
word = word.lower()
word = remove_punctuation(word)
if word not in ignored_words:
if word not in dictionary:
dictionary[word] = []
matching_urls = list(filter(lambda entry: entry["url"] == url.strip(), dictionary[word]))
if len(matching_urls) == 0:
# if not url.strip() in dictionary[word]:
entries = dictionary[word]
entry = {"url": url.strip(), "count": 1, "filename": str(path)}
dictionary[word].append(entry)
else:
entries = dictionary[word]
entry = matching_urls[0]
entry["count"] += 1
entries.sort(reverse=True, key=lambda entry: entry["count"])
index.write(json.dumps(dictionary))
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('-r', "--rebuild", action="store_true", help="Blow away the index and rebuild")
args = parser.parse_args()
if args.rebuild:
build_index()

View file

@ -1,18 +1,72 @@
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column, Integer, String, DateTime
from sqlalchemy import Column, String, DateTime, ForeignKey, Index, Integer
from sqlalchemy.dialects.postgresql import UUID
from sqlalchemy.orm import relationship, mapped_column
import uuid
Base = declarative_base()
class Website(Base):
__tablename__ = 'websites'
class Documents(Base):
__tablename__ = 'documents'
id = Column(UUID(as_uuid=True), primary_key=True, default=uuid.uuid4)
url = Column(String)
text_content = Column(String)
html_content = Column(String)
first_crawl_date = Column(DateTime)
last_crawl_date = Column(DateTime)
last_index_date = Column(DateTime)
document_tokens = relationship(
"Document_Tokens", back_populates="document")
document_ngrams = relationship(
"Document_NGrams", back_populates="document")
class Document_Tokens(Base):
__tablename__ = 'document_tokens'
id = Column(UUID(as_uuid=True), primary_key=True, default=uuid.uuid4)
document_id = mapped_column(ForeignKey("documents.id"))
# Column(UUID(as_uuid=True), primary_key=True, default=uuid.uuid4)
token_id = mapped_column(ForeignKey("tokens.id"))
# Column(UUID(as_uuid=True), primary_key=True, default=uuid.uuid4)
document = relationship(
"Documents", back_populates="document_tokens", uselist=False)
token = relationship("Tokens", back_populates="document_tokens")
__table_args__ = (
Index('idx_document_tokens_document_id_token_id', 'document_id',
'token_id', unique=True, postgresql_using='hash'),
Index('idx_document_tokens_clustered', 'document_id',
'token_id', postgresql_using='hash'),
)
class Tokens(Base):
__tablename__ = 'tokens'
id = Column(UUID(as_uuid=True), primary_key=True, default=uuid.uuid4)
token = Column(String, index=True)
document_tokens = relationship("Document_Tokens", back_populates="token")
class NGrams(Base):
__tablename__ = 'ngrams'
id = Column(UUID(as_uuid=True), primary_key=True, default=uuid.uuid4)
size = Column(Integer, index=True)
gram = Column(String, index=True)
document_ngrams = relationship("Document_NGrams", back_populates="ngram")
class Document_NGrams(Base):
__tablename__ = 'document_ngrams'
id = Column(UUID(as_uuid=True), primary_key=True, default=uuid.uuid4)
document_id = mapped_column(ForeignKey("documents.id"))
ngram_id = mapped_column(ForeignKey("ngrams.id"))
document = relationship(
"Documents", back_populates="document_ngrams", uselist=False)
ngram = relationship("NGrams", back_populates="document_ngrams")
__table_args__ = (
Index('idx_document_ngrams_document_id_ngram_id', 'document_id',
'ngram_id', unique=True, postgresql_using='hash'),
Index('idx_document_ngrams_clustered', 'document_id',
'ngram_id', postgresql_using='hash'),
)

View file

@ -1,30 +1,146 @@
#!/bin/bash
#!/usr/bin/python3
from sqlalchemy import create_engine, func, and_, or_, not_
from config import DATABASE_URI
from models import Base, NGrams, Documents, Document_NGrams, NGrams, Document_NGrams
from sqlalchemy.orm import sessionmaker
from sqlalchemy.sql.expression import distinct
import time
from flask import Flask
from flask import Request
import json
from flask_cors import CORS
from flask import send_from_directory
from urllib.parse import unquote
app = Flask(__name__)
## Todo - Boolean search (AND/OR/NOT/"")
@app.route("/search/<query>")
def search(query):
with open('data/index.json', 'r') as index_json:
index = json.load(index_json)
query = unquote(query)
query_split = query.split()
result = []
for q in query_split:
q = q.lower()
if q in index:
for item in index[q]:
matching_results = list(filter(lambda entry: entry['url'] == item["url"], result))
if len(matching_results) == 0:
result.append(item)
else:
matching_results[0]["count"] += item["count"]
app = Flask(__name__, static_url_path='/static/')
CORS(app)
engine = create_engine(DATABASE_URI)
Base.metadata.create_all(engine)
Session = sessionmaker(bind=engine)
# Todo - Boolean search (AND/OR/NOT/"")
def split_query(query):
query = query.lower()
result = {'ands': [], 'ors': [], 'words': [],
'ngrams': [], 'exclusions': []}
query_words = query.split()
i = 0
while i < len(query_words):
if i + 1 < len(query_words):
if query_words[i + 1].lower() == "and":
if i + 2 < len(query_words):
result['ands'].append(
query_words[i] + ',' + query_words[i+2])
i = i + 3
continue
if query_words[i][0] == '"':
n = 0
quoted_query = ""
while i+n < len(query_words):
quoted_query += query_words[i+n] + ' '
if query_words[i+n][len(query_words[i+n])-1] == '"':
break
n += 1
result['ngrams'].append(
quoted_query[1:len(quoted_query)-2].rstrip())
i += n + 1
continue
elif query_words[i][0] == "-":
excluded_query = query_words[i][1: len(query_words[i])]
result['exclusions'].append(excluded_query)
i += 1
continue
result['ngrams'].append(query_words[i])
i += 1
return result
def handle_and():
pass
@ app.route("/search/<query>")
def search(query):
start_time = time.time_ns()
session = Session()
results = {}
query_words = split_query(unquote(query))
print(query_words)
if len(query_words['ands']) > 0:
print('entering ands: ' +
str((time.time_ns() - start_time) // 1_000_000) + "ms")
for a in query_words['ands']:
query = session.query(Documents.url, func.count(1)). \
join(Document_NGrams, Documents.id == Document_NGrams.document_id). \
join(NGrams, Document_NGrams.ngram_id == NGrams.id). \
filter(NGrams.gram.in_([a.split(',')[0], a.split(',')[1]])).\
group_by(Documents.url). \
having(func.count(distinct(Document_NGrams.ngram_id)) == 2). \
order_by(func.count(1).desc())
# limit(100)
print(query)
for result in query.all():
if result[0] in results.keys():
results[result[0]] += result[1]
else:
results[result[0]] = result[1]
print('exiting ands: ' +
str((time.time_ns() - start_time) // 1_000_000) + "ms")
if len(query_words['ngrams']) > 0:
print('entering ngrams: ' +
str((time.time_ns() - start_time) // 1_000_000) + "ms")
q = session.query(Documents.url, func.count(1)) \
.join(Document_NGrams, Documents.id == Document_NGrams.document_id) \
.join(NGrams, Document_NGrams.ngram_id == NGrams.id) \
.group_by(Documents.url)
conditions = []
for ngram in query_words['ngrams']:
conditions.append(
(NGrams.size == len(ngram.split(' ')), NGrams.gram == ngram))
# q = q.filter_by(size=len(ngram.split(' '))).filter_by(gram=ngram)
and_conditions = [and_(*condition_pair)
for condition_pair in conditions]
q = q.filter(or_(*and_conditions))
print('query built: ' + str((time.time_ns() - start_time) // 1_000_000) + "ms")
print(q)
x = q.limit(100).all()
print('query executed: ' +
str((time.time_ns() - start_time) // 1_000_000) + "ms")
print(x)
for result in x:
if result[0] in results.keys():
results[result[0]] += result[1]
else:
results[result[0]] = result[1]
# for y in x:
# print(y)
# for document_ngram in y.document_ngrams:
# if document_ngram.document.url in results.keys():
# results[document_ngram.document.url] += 1
# else:
# results[document_ngram.document.url] = 1
print('exiting ngrams: ' +
str((time.time_ns() - start_time) // 1_000_000) + "ms")
print(str((time.time_ns() - start_time) // 1_000_000) + "ms")
session.close()
return sorted(results.items(), key=lambda x: x[1], reverse=True)[:len(results.items())]
# @app.route("/search/<query>")
# def search(query):
# start_time = time.time_ns()
# session = Session()
# result = {}
# query_words = unquote(query).split()
# x= session.query(NGrams).filter(NGrams.ngram.in_(query_words)).take(1000)
# for word in query_words:
# word = word.lower()
# matching_ngram = session.query(NGrams).filter_by(ngram=word).first()
#
# if matching_ngram is None:
# continue
# for document_ngram in matching_ngram.document_ngrams:
# if document_ngram.document.url in result.keys():
# result[document_ngram.document.url] += 1
# else:
# result[document_ngram.document.url] = 1
# print(str((time.time_ns() - start_time) // 1_000_000) + "ms")
# return sorted(result.items(), key=lambda x: x[1], reverse=True)[:10]

11
todo Normal file
View file

@ -0,0 +1,11 @@
[x] Refactor website table to generic document table (maybe using URN instead of URL?)
[x] Define tokens table FKed to document table
[x] Refactor index.py to tokenize input into tokens table
[x] Define N-Grams table
[x] Add N-Gram generation to index.py
[x] Add clustered index to document_ngrams table model
[x] Add clustered index to document_tokens table model
[ ] Add ddl command to create partition tables
[x] Investigate whether or not robots.txt is as aggressive as I'm making ito ut to be
[x] Instead of starting from a random page on the site, go to root and find site map and crawl that